Why we use microPython

Rapid prototyping with microPython devices

Marco Zennaro, ICTP
February 18, 2018

Why micropython?

Most Popular Coding Languages of 2016

code va\

python ecosystem

Ehylables N

lSM MStotsMode @ Scjlk'ts"mage

Statistics s Pthan

’ NumPy "’ ython SymPy

IPython 'g pl:lt Oﬂ

MicroPython is a lean and fast implementation of the Python 3
programming language that is optimised to run on a microcontroller.
MicroPython was successfully funded via a Kickstarter campaign and the
software is now available to the public under the MIT open source license.

It ensures that the memory size/microcontroller performance is optimised
and fit for purpose for the application it serves. Many sensor reading and
reporting applications do not require a PC based processor as this would
make the total application over priced and under-efficient.

Credit pycom.io 3]

micropy

2]
€
o

thon opt

pyboard

The MicroPython pyboard is a compact electronic circuit board that runs
MicroPython on the bare metal, giving you a low-level Python operating
system that can be used to control all kinds of electronic projects.

MicroPython is packed full of advanced features such as an interactive
prompt, arbitrary precision integers, closures, list comprehension,
generators, exception handling and more. Yet it is compact enough to fit
and run within just 256k of code space and 16k of RAM.

MicroPython aims to be as compatible with normal Python as possible to
allow you to transfer code with ease from the desktop to a
microcontroller or embedded system.

Credit micropython.org 5)

pyboard

S

b b
b

P

Made in t

o
S
(s}
sl

N c =
- p—d
=i -
21

~ i
N
o™
=3
—
=4
-
=3
d
g
©
4
o™
o

micro

Genpuzne 9

BOARD
description

SKU

PRICE

GBP incl. tax

approx EUR incl. tax
approx USD excl. tax

MICROCONTROLLER
Mcu

CPU

internal flash

RAM

maximum frequency
hardware floating point

MicroPython pyboard feature table

The original
pyboard v1.1
PYBv1.1

£28.00
€39.20
$35.00

STM32F405RGT6
Cortex-M4F
1024k

192k

168MHz

single precision

Pyboard lite v1.0 with
accelerometer
PYBLITEv1.0-AC

£22.60
€31.60
$28.25

STM32F411RET6
Cortex-M4F

512k

128k

96MHz

single precision

Pyboard lite v1.0

PYBLITEv1.0

£19.60
€27.40
$24.50

STM32F411RET6
Cortex-M4F

512k

128k

96MHz

single precision

BOARD FEATURES
micro USB connector
micro SD card slot
accelerometer (MMA7660)
real time clock

switches

leds

hobby servo ports

DFU mode for firmware
upgrade

POWER SUPPLY
supply options
input range on V+/VBAT

max output of regulated 3.3v

place for JST connector

backup battery input (VBACK)

yes
yes
yes
32kHz crystal

USR+RST
R+G+Y+B
4

yes

USB/V+/VBAT
3.6v-16v
250mA

yes

yes

yes

yes

yes

internal oscillator; pads to
solder 32kHz crystal
USR+RST

R+G+Y+B

4

yes

USB/V+/VBAT
3.6v-16v
250mA

yes

yes

yes

yes

no

internal oscillator; pads to
solder 32kHz crystal
USR+RST

R+G+Y+B

4

yes

USB/V+/VBAT
3.6v-16v
250mA

yes

yes

pyboard

POWER CONSUMPTION

running at 168MHz 56mA - -
running at 96MHz 37mA 23mA 23mA
running at 48MHz 21mA 13mA 13mA
idling at 168MHz 16mA - -
idling at 96MHz 12mA 5mA 5mA
idling at 48MHz 7mA 4mA 4mA
sleep (full RAM retention) 360uA 180uA 180uA
deepsleep (backup retention 6UA 6uUA 6UA
only)

10 CAPABILITIES

10 pins 30 30 30
pins with PWM 20 18 18
pins with A/D 16 (4 shielded) 16 (4 shielded) 16 (4 shielded)
pins with D/A 2 0 0

pyboard

PERIPHERALS
independent timers 13 7 7
hardware random number yes no no
generator

UART 5
12C 2
SPI 2
CAN 2

oW
on N W

MICROPYTHON

CAPABILITIES

internal flash fs 112k (94k usable) 64k (46k usable) 64k (46k usable)
approx heap size 100k 83k 83k

ADD-ONS

LCD+touch skin compatible yes yes yes
(LCD32MKv1.0)

Audio skin compatible yes no no
(AMPv1.0)

10

low cost

ESP8266:

ESP8266: characteristics

= 802.11 b/g/n

= Built-in TCP / IP protocol stack

= Built-in PLL, voltage regulator and power management components
= 802.11b mode + 19.5dBm output power

= Built-in temperature sensor

= off leakage current is less than 10uA

= Built-in low-power 32-bit CPU: can double as an application
processor

= SDIO 2.0, SPI, UART

= standby power consumption of less than 1.0mW

12

BBC Micro:bit

BEE

) Bluetooth ®Smart antenna 32-bit ARM ®Cortex™M0 CPU Micro USB connector
L. 11_ 16K RAM 16MHz with Bluetooth Low Energy

5em

battery connector

4om

2 programmable
buttons

3digital/analogue 25individually power ground back accelerometer and compass 20 pin edge connector
input/output rings programmable LEDs port port

FRONT BACK

13

BBC Micro:bit

The Micro Bit is an ARM-based embedded system designed by the BBC
for use in computer education in the UK.

The board has an ARM Cortex-MO processor, accelerometer and
magnetometer sensors, Bluetooth and USB connectivity, a display
consisting of 25 LEDs, two programmable buttons, and can be powered
by either USB or an external battery pack. The device inputs and
outputs are through five ring connectors that are part of the 23-pin edge
connector.

14

@ Add to compare

Digi XBee3™ Cellular LTE CAT 1
Digi XBee3™ smart modems
offer the easiest way to integrate
cellular...

@ Add to compare

Digi XBee® Cellular LTE Cat 1
Digi XBee Cellular LTE Cat 1
embedded modems provide
OEMs with a...

15

Trinket

O

‘adafruit\.’
Trinket MO -~

pycom: WiPy

17

pycom: WiPy

= Espressif ESP32 chipset

= Dual processor + WiFi radio system on chip
= consuming 25uA

= 2 x UART, 2 x sPI, 12C, 12S, micro SD card
= Analog channels: 8x12 bit ADCs

= Hash/Encryption: SHA, MD5, DES, AES

= Bluetooth

= Memory, RAM: 512KB, External flash: 4MB

= Hardware floating point acceleration

18

pycom: LoPy

ESP32 Dual Core
Microcontroller and
WiFi/Bluetooth 4.2
LoRa transceiver radio

32Mbit flash memory

3V3 Ultra-Low
-Noise switching

regulator

WS2812 RGB il | ¢ 3'
multi-colour —j | o LO

LED . | LERa'@'tmuetmm'

RF switch
U.FL connector

Reset switch Internal WiFi and
Bluetooth Antenna

External LoRa antenna
connector

19

pycom: SiPy

20

pycom: Expansion Board

21

pycom: PySense

22

pycom: PySense

= Ambient light sensor

= Barometric pressure sensor
= Humidity sensor

= 3 axis 12-bit accelerometer
= Temperature sensor

= USB port with serial access
= LiPo battery charger

= MicroSD card compatibility

= Ultra low power operation (1uA in deep sleep)

23

pycom: PyTrack

USB serial port JST connector for
LiPo battery
USE to serial
converter
Glonass
GPS
Micro SD
Card Slot
?Pycom Accelerometer

24

pycom: PyTrack

= GNSS + Glonass GPS

= 3 axis 12-bit accelerometer
= USB port with serial access
= LiPo battery charger

= MicroSD ard compatibility

= Ultra low power operation (1uA in deep sleep)

25

Plan of the week

plan for the week

During the lab sessions we will cover:

Pycom workflow

Hello World for loT: LED switching

Saving data to a microSD or to internal flash

Reading sensors using the PySense

Reading position using the PyTrack

Connecting to WiFi and measuring the signal strength
Using MQTT

Using LoRaWAN

© ©o N o 0 Bk w N =

Project presentation

You will have simple code snippets and will develop more complex code
as exercise.

26

workflow: Atom

Packages Themes Documentati

Blog Discuss

& ATOM

A hackable text editor
for the 21st Century

Introducing

GitHub for

Atom
Download For Mac

For macOS 10.8 or later
Release notes - Other platforms - Beta releases

Project text-editor-element.js
D atom
getComponent () {
if (!this.component) {

github this.component = new TextEditorComponent({

apm element: this,
chmarks mini: this.hasAttribute('mini‘),

Please install Atom from

www.atom.io

27

www.atom.io

workflow: install the pymakr package

[] (] Settings
¥ Settings
Core
Editor Install Packages
s are published to io and are installed to /Users/marcozennaro/.atom/p:

Keybindings

Packages pymakr Packages = Themes

Themes

language-make 0.22.3 306,507
Make language support in Atom

Updates

Settings Disable
Install

linter-elm-make
Lint Elm code with elm-make

28

workflow: update packages if necessary

Settings
¥ Settings

A More ZReconnect &Sync B Run & Settings v Close

@ ofiles

workflow: connect board via USB

Make sure the LED and the microUSB are on the same side!
30

workflow: get serial port

Get serial ports
Get firmwafg Version
Get WiFi AP SSID

v More = Connect # Settings w Close

31

workflow: global settings

Project settings

Global settings

4 Sync P Run £ Settings w (

32

workflow: insert correct device address

Settings

Device address

/dev/cu.usbserial-DQ@08H98

User name

Password

workflow: connect!

Get serial ports
Get firmware version
Get WiFi AP SSID

v More| = Connect # Settings w Close

34

workflow:

” Connected

[Found 3 serialports

/dev/cu.usbserial-DQ008N17 (copied to clipboard)
/dev/cu.MarcosiPad-WirelessiAP
/dev/cu.Bluetooth-Incoming-Port

onnecting on /dev/cu.usbserial-DQ0O08N17...

35

REPL console

REPL stands for Read Print Eval Loop. Simply put, it takes user inputs,
evaluates them and returns the result to the user.

You have a complete python console!
Try to enter 242 and press Enter.
Now enter:

print("Hi! | am a python shell!”)

36

executing code

There are three ways to execute code on a Pycom device:

1. Via the REPL shell. Useful for single commands and for testing.

2. Using the Run button. Code in the Atom editor will be executed,

but will not be stored in the device. If you reboot, the code will not
be executed again.

3. Synching the device with the Project folder in Atom.

37

workflow: Run

A More ZReconnect X.Synd P Run { Settings + Close

38

workflow: add Project folder

M Edit View Selection Find |

New Window {+3N
New File N
Open... #0
Add Project Folder... {30
Reopen Project >

Reopen Last Item 4T

Save #S
Save As... 0 8S
Save All X3S
Close Tab BW

Close Pane

39

workflow: ONE Project folder

New File
New Folder

Rename
Duplicate
Delete
Copy
Cut
Paste

Add Project Folder
Remove Project Folder

Copy Full Path
Copy Project Path

Open In New Window
Search in Directory

Show in Finder

Split Up

Qnlit NAwm

It is easier if you only have one Project folder. Make sure you Remove
any other Project folders and keep only the one you want to use.

40

workflow: Project folder

The Project folder should contain all the files to be synched with the
device.

You should always have two files: boot.py (executed at boot time) and
main.py (containing the main code).

The folder can also include libraries and other python source code.

41

workflow: example of Project folder

Project

v Il LED

£ boot.py
& main.py

workflow: boot.py

The boot.py file should always start with following code, so we can run
our Python scripts over Serial or Telnet.

from machine import UART
import os

uart = UART(0, 115200)
os.dupterm(uart)

43

LED

In this example, we will create and deploy the proverbial 1st app, “Hello,

world!" to a Pycom device.

The WiPy module has one LED (big, white LED on the same side as the
microUSB).

a4

code: LED

Check the LED folder and sync the two files to your active project folder.

Try to send an SOS message using the LED. The SOS is
line-line-line-dot-dot-dot-line-line-line in morse code, where a line is three

times longer than a dot.

45

	Why micropython?
	Plan of the week
	LED

